
Weeks 12 and 13
Interrupt Interface of the 8088 and

8086 Microprocessors

2

INTERRUPT INTERFACE

Interrupts provide a mechanism for quickly changing program environment.

The section of the program which the control is passed: Interrupt Service Routine,
ex: For printers it is the printer driver.

8088 and 8086 interrupts:

External Hardware Interrupts

Nonmaskable Interrupt

Software Interrupts

Internal Interrupts

Reset

P
R
I
O
R
I
T
Y

High

Lower priority interrupts need to wait for the higher priority interrupts to be completed

3

8088/8086 Interrupts

• An interrupt is an external event which informs the CPU that a
device needs service

• In the 8088 & 8086 there are are a total of 256 interrupts (or
interrupt types)
– INT 00
– INT 01
– …
– INT FF

• When an interrupt is executed, the microprocessor automatically
saves the flags register (FR), the instruction pointer (IP) and the
code segment register (CS) on the stack and goes to a fixed
memory location.

• In 80x86, the memory location to which an interrupt goes is always
four times the value of the interrupt number

• INT 03h goes to 000Ch

4

Interrupt Service Routine

• For every interrupt, there must be a program associated with it
• This program is called an Interrupt Service Routine (ISR)
• It is also called an interrupt handler
• When an interrupt occurs, CPU runs the interrupt handler but where

is the handler?
– In the interrupt Vector Table (IVT)

INT Number Physical Address Contains
INT 00 00000h IP0:CS0

INT 01 00004h IP1:CS1

INT 02 00008h IP2:CS2

.

.

.

.

.

.

.

.

.
INT FF 003FCh IP255:CS255

5

Interrupt Vector Table

• Interrupt vector table consists of 256 entries each
containing 4 bytes.

• Each entry contains the offset and the segment address of
the interrupt vector each 2 bytes long.

• Table starts at the memory address 00000H.
• First 32 vectors are spared for various microprocessor

operations.
• The rest 224 vectors are user definable.
• The lower the vector number, the higher the priority.

6

Interrupt Vector Table

First 1 K
memory

•Contains 256 address pointers
(vectors)

•These pointers identify the
starting location of their service
routines in program memory.

•Held as firmware or loaded as
system initialization

7

Examples

For example: vector 50: CS and IP?

Physical Address 200 = (4 x 50) = 200 = 11001000 =
C8H
000C8 contains IP: and 000CA contains CS information

• INT 12h (or vector 12)
• The physical address 30h (4 x 12 = 48 = 30h)

contains
0030h and 0031h contain IP of the ISR
0032h and 0033h contain CS of the ISR

8

Interrupt Instructions

9

Differences between INT and CALL

A CALL FAR instruction can jump any location within the
1 MB address range but INT nn goes to a fixed memory location
in the Interrupt Vector Table to get the address of the interrupt
service routine

A CALL FAR instruction is used by the programmer in the
sequence of instruction in the program but externally activated
hardware interrupt can come at any time

A CALL FAR cannot be masked but INT nn in hardware can be
blocked.

A CALL FAR saves CS:IP but INT nn saves Flags and CS:IP

At the end of the subroutine RET is used
whereas for Interrupt routine IRET should be the last statement

10

Interrupt Mechanisms, Types, and Priority

INTERRUPT TYPES SHOWN WITH DECREASING
PRIORITY ORDER
1.Reset
2.Internal interrupts and exceptions
3.Software interrupt
4.Nonmaskable interrupt
5.Hardware interrupt

All the interrupts are serviced on priority basis. The higher priority
interrupt is served first and an active lower priority interrupt service is
interrupted by a higher priority one. Lower priority interrupts will have to
wait until their turns come.
The section of program to which the control is passed called
Interrupt-service routine (ISR)

11

Interrupt instructions

• Interrupt enable flag (IF) causes external interrupts to be enabled.
• INT n initiates a vectored call of a subroutine.
• INTO instruction should be used after each arithmethic instruction

where there is a possibility of an overflow.
• HLT waits for an interrupt to occur.
• WAIT waits for TEST input to go high.

12

The Operation of Real Mode Interrupt

1. The contents of the FLAG REGİSTERS are pushed onto the stack
2. Both the interrupt (IF) and (TF) flags are cleared. This disables the

INTR pin and the trap or single-step feature. (Depending on the
nature of the interrupt, a programmer can unmask the INTR pin by
the STI instruction)

3. The contents of the code segment register (CS) is pushed onto the
stack.

4. The contents of the instruction pointer (IP) is pushed onto the stack.
5. The interrupt vector contents are fetched, and then placed into both

IP and CS so that the next instruction executes at the interrupt
service procedure addressed by the interrupt vector.

6. While returning from the interrupt-service routine by the instruction
IRET, flags return to their state prior to the interrupt and and
operation restarts at the prior IP address.

13

INT 00 (divide error)

MOV AL,92
SUB CL, CL
DIV CL ; 92/0 undefined

; Also invoked if the quotient is too large to fit into the assigned register

MOV AX,0FFFh
MOV BL,2
DIV BL

; WRITE A DIVIDE ERROR ISR

Prompt db ‘Division by zero attempted$’

Diverr: PUSH DX
Mov ah,09h
Mov dx, offset prompt
int 21h
POP DX

14

INT 01 (Single Step)

In executing a sequence of instructions, there is often a need to
examine the contents of the CPU’s registers and system
memory.

This is done by executing one instruction at a time and then
inspecting the registers and memory

This is called the tracing or the single stepping

TF must be set (D8 of the flag register)

PUSHF
POP AX
OR AX,0000000100000000B
PUSH AX
POPF

15

Other Interrupts

• INT 02h
– Intel has set aside INT 02h for the NMI interrupt
– There is an NMI pin on the CPU
– If the NMI pin is activated by a H signal, the CPU jumps to

00008H to fetch the CS:IP of the ISR associated with NMI

• INT 03h (breakpoint)
• INT 04H (signed number overflow) or INTO

– If OF=0 goes to 00010h to get the address of the ISR
– Otherwise, it is equivalent to NOP

• Example: Use debug dump command to see the IVT
– D 0000:0000 0013

16

External Hardware Interrupt Interface

Minimum Mode

The interrupt circuitry must identify
which of the pending interrupts has
the highest priority.

Then passes its type number to the
MPU

The MPU samples the INTR at the
last clock period of each instruction
execution cycle. Its active high level
must be maintained.

When recognized INTRA
generated.

17

External hardware-interrupt Interface

• Minimum mode hardware-interrupt interface:
– 8088 samples INTR input during the last clock period of each

instruction execution cycle. INTR is a level triggered input;
therefore logic 1 input must be maintained there until it is
sampled. Moreover, it must be removed before it is sampled next
time. Otherwise, the same Interrupt Service is repeated twice.

– INTA goes to 0 in the first interrupt bus cycle to acknowledge
the interrupt after it was decided to respond to the interrupt.

– It goes to 0 again the second bus cycle too, to request for the
interrupt type number from the external device.

– The interrupt type number is read by the processor and the
corresponding int. CS and IP numbers are again read from the
memory.

18

External hardware-interrupt Sequence

19

Resident Programs

• Usually non-resident program is a file, loaded from disk by DOS.
Termination of such program is the passing control back to DOS.
DOS frees all memory, allocated for and by this program, and stays
idle to execute next program.

• Resident program passes control to DOS at the end of its execution,
but leaves itself in memory whole or partially.

• Such way of program termination was called TSR - Terminate-and-
Stay-Resident. So resident programs often called by this
abbreviations - TSR.

• For example, TSR can watch keypresses to get passwords, INT 13h
sectors operations to substitute info, INT 21h to watch and dispatch
file operations and so on.

• TSR stays in memory to have some control over the processes.
Usually, TSRs takes INTerrupt vectors to its code, so, when interrupt
occurs, vector directs execution to TSR code.

20

Storing an Interrupt Vector in the Vector Table

In order to install an interrupt vector – sometimes called a hook – the
assembler must address absolute memory

INT 21h

Initialization
AH = 25h
AL = interrupt
type number
DS:DX = address
of new interrupt
procedure

Terminate and stay resident
AH = 31h
AL = 00
DX = number of paragraphs
to reserve for the program

Read the current vector
AH = 35h
AL = interrupt type
number
ES:BX = address
stored at vector

21

A virus!

22

Example-storing Interrupt Vector

23

Example-storing Interrupt Vector

24

Interrupt Sequence

The interrupt sequence
begins when external device
requests service by
activating one of the
interrupt inputs.

The external device
evaluates the priority of this
interrupt

INTR 1
80x86 checks for the

INTR at the last T state of
the instruction

Check for IF before
granting INTA

25

Interrupt Sequence

80x86 initiates the INTA
bus cycle. During T1 of the
first bus cycle ALE is sent
and bus is at Z state and
stays high for the bus cycle.

LOCK is provided in
maxmode operation

During the second
interrupt acknowledge bus
cycle, external circuitry
gates one of the interrupts
20 FF onto data bus lines

Must be valid during T3
and T4 of second bus cycle

26

Interrupt Sequence

DT/R and DEN are at
logic zero and IO/M is at 1.

Next save the contents of
the flag register

TF and IF are cleared
CS and IP are pushed

Upon return by IRET
CS and IP are popped
Flags are popped

Two word read
operations are performed.

The type number is
internally multiplied by 4

The contents in this
location is fetched and
loaded into IP

Then type number * 4 +
2 content is loaded into
CS

27

Interrupt Example

• An interrupting device interrupts the microprocessor each time the
interrupt request input has a transition from 0 to 1.

• 74LS244 creates the interrupt type number 60H as a response to
INTA

• Assume:
– CS=DS=1000H
– SS=4000H
– Main program offset is 200H
– Count (counts the number of interrupts) offset is 100H
– Interrupt-service routine code segment is 2000H
– Interrupt-service routine code offset is 1000H
– Stack has an offset of 500H to the current stack segment
– Make a map of the memory space organisation
– Write a main program and a service routine to count the number of

positive interrupt transitions.

28

Interrupt Example

Interrupts the microprocessor each time the interrupt request signal has a
transition from 0 1. The corresponding interrupt number generated by

the hardware in response to INTA is 60H

29

Memory organization

30

Program

31

Using hardware interrupt

Using Tri-state buffers to Input vector

Cheapest Way (FF applied)

32

Interrupt circuits

33

Description

• 8255 is decoded at 0500h, 0502h, 0504h, and 0506h
• 8255 is operated at Mode 1 (strobed input) B0 CONTROL WORD
• Whenever a key is typed , the INTR output (PC3) becomes a logic 1

and requests an interrupt thru the INTR pin on the microprocessor
• The INTR remains high until the ASCII data are read form port A.
• In other words, every time a key is typed the 8255 requests a type

40h interrupt thru the INTR pin
• The DAV signal from the keyboard causes data to be latched into

port A and causes INTR to become a logic 1
• Data are input from the keyboard and then stored in the FIFO (first

in first out) buffer
• FIFO in our example is 256 bytes
• The procedure first checks to see whether the FIFO is full.
• A full condition is indicated when the input pointer (INP) is one byte

below the output pointer (OUTP)

34

Remembering Mode 1 with Interrupts this time

35

Example: “Read from the Keyboard routine” into FIFO

; interrupt service routine to read a key from the keyboard
PORTA EQU 500h
CNTR EQU 506h
FIFO DB 256 DUP (?)
INP DW ? ; SET AS OFFSET FIFO IN MAIN PROG
OUTP DW ? ; SET AS OFFSET FIFO IN MAIN PROG

KEY: PROC FAR ;USES AX BX DI DX
MOV BX, INP
MOV DI, OUTP
INC BL
CMP BX, DI ;test for queue full
JE FULL ; if queue is full
DEC BL
MOV DX, PORTA
IN AL,DX ; read the key
MOV [BX], AL
INC WORD PTR INP
JMP DONE

FULL: MOV AL,8 ;DISABLE THE INTERRUPT
MOV DX, CNTR
OUT DX,AL

DONE: IRET
KEY ENDP

36

Example contd: “Read from the FIFO into AH”

READ: PROC FAR USES BX DI DX
EMPTY: MOV BX, INP

MOV DI, OUTP
CMP BX,DI
JE EMPTY
MOV AH, CS:DI
MOV AL,9 ; enable 8255 intEa
MOV DX, CNTR
OUT DX,AL
INC BYTE PTR CS:OUTP
RET

READ : ENDP

37

Multiple Interrupts - Another Interrupt Structure

38

Multiple Interrupts - Interrupt Structures

This drawing can
accommodate up to 7
interrupts.

If any of the IR inputs
becomes a logic 0, then the
output of the NAND gate
goes to logic 1 and requests
an interrupt through the
INTR input.

The PRIORITY among the
interrupts is resolved using
software techniques.
Ex: IR1 and IR0 active
creates FCH (252). At this
location IR0 can be placed to
resolve.

39

Operation

• If any of the IR inputs becomes a logic 0, then the output
of the NAND gate goes to logic 1 and requests an interrupt
through the INTR input
• Single interrupt request
• What if IR0 and IR1 are active at the same time?
• The interrupt vector is generated is FCh
• If the IR0 input is to have higher priority, the vector
address for IR0 is stored at vector location FCh
• The entire top half of the vector table and its 128
interrupt vectors must be used to accommodate all
possible conditions
• This seems wasteful but it may be cost effective in
simple systems

40

Multiple Interrupts Using Priority Encoder

Or you may use a
priority encoder!

8255 Programmable Interrupt Controller

42

8259 Programmable Interrupt Controller

•The 8259 programmable interrupt controller (PIC) adds eight
vectored priority encoded interrupts to the microprocessor.
•This controller can be expanded to accept up to 64 interrupt
requests. This requires a master 8259 and eight 8259 slaves.
•Vector an Interrupt request anywhere in the memory map.
•Resolve eight levels of interrupt priorities in a variety of modes,
such as fully nested mode, automatic rotation mode, and specific
rotation mode.
•Mask each of the interrupt request individually
•Read the status of the pending interrupts, in-service interrupts
and masked interrupts.

43

Block Diagram

44

82C59A Programmable Interrupt Controller
• Block diagram of 82C59A includes 8 blocks

– 8259 is treated by the host processor as a peripheral device.
– 8259 is configured by the host pocessor to select functions.

– Data bus buffer and read-write logic: are used to configure the
internal registers of the chip.

• A0 address selects different command words within the 8259

45

82C59A Programmable Interrupt Controller
– Control Logic INT and INTA¯ ared used as the handshaking interface.

• INT output connects to the INTR pin of the master and is connected to a
master IR pin on a slave. INTA¯ is sent as a reply.

• In a system with master and slaves, only the master INTA ¯ signal is
connected.

– Interrupt Registers and Priority Resolver: Interrupt inputs IR0 to IR7
can be configured as either level-sensitive or edge-triggered inputs.
Edge-triggered inputs become active on 0 to 1 transitions.
1. Interrupt request register (IRR): is used to indicate all interrupt

levels requesting service.
2. In service register (ISR): is used to store all interrupt levels which are

currently being serviced.
3. Interrupt mask register (IMR): is used to enable or mask out the

individual interrupt inputs through bits M0 to M7. 0= enable, 1=
masked out.

4. Priority resolver: This block determines the priorities of the bits set in
the IRR. The highest priority is selected and strobed into the
corresponding bit of the ISR during the INTA¯ sequence.
– The priority resolver examines these 3 registers and determines

whether INT should be sent to the MPU

46

82C59A Programmable Interrupt Controller

– Cascade-buffer comparator: Sends the address of the
selected chip to the slaves in the master mode and
decodes the status indicated by the master to find own
address to respond.
– Cascade interface CAS0-CAS2 and SP¯/EN¯:

• Cascade interface CAS0-CAS2 carry the address of the slave to be
serviced.

• SP¯/EN¯ :=1 selects the chip as the master in cascade mode
:=0 selects the chip as the slave in cascade mode
:in single mode it becomes the enable output for
the data transiver

47

Interrupt Sequence

1) One or more of the INTERRUPT REQUEST lines (IR0 - IR7) are
raised high, setting the corresponding IRR bit(s).

2) The 82C59A evaluates those requests in the priority resolver with
the IMR and ISR, resolves the priority and sends an interrupt (INT)
to the CPU, if appropriate.

3) The CPU acknowledges the lNT and responds with first INTA pulse.
4) During this INTA pulse, the appropriate ISR bit is set and the

corresponding bit in the IRR is reset (to remove request). The
82C59A does not drive the data bus during the first INTA pulse.

5) The 80C86/88/286 CPU will initiate a second INTA pulse. The
82C59A outputs the 8-bit pointer onto the data bus to be read by the
CPU.

6) This completes the interrupt cycle. In the Automatic End of
Interrupt (AEOI) mode, the ISR bit is reset at the end of the second
INTA pulse. Otherwise, the ISR bit remains set until an appropriate
End of Interrupt (EOI) command is issued at the end of the interrupt
subroutine.

48

8259 System Bus

49

Content of the Interrupt Vector Byte

50

Two controllers wired in cascade

On the PC, the controller is
operated
in the fully nested mode

Lowest numbered IRQ input
has highest priority

Interrupts of a lower priority
will not be acknowledged
until the higher priority interrupts
have been serviced

51

Fully Nested Mode
• It prioritizes the IR inputs such that IR0 has highest priority and IR7

has lowest priority
• This priority structure extends to interrupts currently in service as

well as simultaneous interrupt requests
• For example, if an interrupt on IR3 is being serviced (IS3 = 1) and a

request occurs on IR2, the controller will issue an interrupt request
because IR2 has higher priority.

• But if an IR4 is received (or any interrupt higher than IR2), the
controller will not issue the request

• Note however that the IR2 request will not be acknowledged unless
the processor has set IF within the IR3 service routine

• In all operating modes, the IS bit corresponding to the active routine
must be reset to allow other lower priority interrupts to be
acknowledged

• This can be done by outputting manually a special nonspecific EOI
instruction to the controller just before IRET

• Alternatively, the controller can be programmed to perform this
nonspecific EOI automatically when the second INTA pulse occurs

52

Interrupt Process Fully Nested Mode

53

End of Interrupt
The In Service (IS) bit can be reset automatically following the trailing edge

of the last in sequence INTA pulse (when AEOI bit in ICW4 is 1) or by a
command word that must be issued to the 8259 before returning from a service
routine (EOI command).

An EOI command must be issued twice in the Cascade mode, once for the
master and once for the corresponding slave.

There are two forms of (non-automatic) EOI command:

Specific: When there is a mode which may disturb the fully nested
structure, the 8259 may not determine the last level acknowledged. In
this case a specific EOI must be issued, which includes the IS level to
be reset. (OCW2)

Non Specific: When a Non Specific EOI issued the 8259 will
automatically reset the highest IS bit of those that are set, since in the
fully nested mode the highest level was necessarily the last level
acknowledged and serviced. (preserve the nested structure)

A non Specific EOI can be also issued at OCW2.

54

Initialization Sequence
Two types of command words are

provided to program the 8259:

1) The initialization command words
(ICW)

2) The operational command words
(OCW)

• Writing ICW1, clears ISR and
IMR

• Also Special Masked mode SMM
in OCW3, IRR in OCW3 and EOI
in OCW2 are cleared to logic 0.

• Fully Nested Mode is entered.

• ICW3 and ICW4 are optional

• It is not possible to modify just one
ICW. Whole ICW sequence must
be repeated

55

ICW1

What value should be written to ICW1 in order to configure the
8259 so that ICW4 needed, the system is going to use multiple
8259s and its inputs are level sensitive?

00011001b = 19h

56

ICW2

What should be programmed into register ICW2 if type number output
on the bus is to range from F0h to F7h

11110000b = F0h

Suppose IR6 is set to generate the value of 6E. Generate the addresses for
the other interrupts.

IR3 = 6B
IR2 = 6A
IR1 = 69
IR0 = 68

IR7 = 6F
IR6 = 6E
IR5 = 6D
IR4 = 6C

57

Master Slave Configuration

58

Master Slave Configuration

When slave signals the master that an interrupt is active the master determines
whether or not its priority is higher than that of any already active interrupt.

If the new interrupt is of higher priority the master controller switches INTR to
logic 1

59

Master Slave Configuration

This signals MPU that external device needs to be serviced. If IF is set. As the first INTA is
sent out the master is signaled to output the 3 bit cascade code of the slave device whose whose
interrupt request is being acknowledged on the CAS bus. All slaves read this code and compare
internally

The slave corresponding to the code is signaled to output the type number of its highest
priority active interrupt on the data bus during the second INTA cycle.

60

ICW3

Q) Suppose we have two slaves connected to a master
using IR0 and IR1.

A) The master is programmed with an ICW3 of 03h,
one slave is programmed with an ICW3 of 00h and
the other with an ICW3 of 01h.

61

Example Master-Slave

aAny requests on interrupt lines INT7
through INT14 will cause IR6 to be
activated on the MASTER.

aThe MASTER will then examine the bit 6
in its ICW3 to see if it is set.

aIf so it will output the cascade number of
the SLAVE on CAS0 through CAS2.

aThese cascade bits are received by the
SLAVE device which examines its ICW3 to
see if there is a match..

aThe programmer must have programmed
110 into the SLAVE’S ICW3. If there is a
match between the cascade number and
ICW3, the SLAVE device will output the
appropriate vector number during the
second INTA pulse.

62

ICW4

AEOI mode requires no
commands. During the second
INTA the ISR bit is reset. The
major drawback with this mode
is that the ISR doesn’t have info
on which IR is served. Thus any
IR with any priority can now
Interrupt service routine.

BUF when 1 selects buffer mode. The SP/EN pin becomes an output for the data
buffers.
When 0, the SP/EN pin becomes the input for the (MASTER/SLAVE)
functionality

M/S is used to set the function of the 8259 when operated in buffered mode.
If M/S is set the 8259 will function as the MASTER.
If cleared will function as SLAVE.

63

Masks and Other Mode selection

•Interrupt Masks
•Each Interrupt request can be masked individually
by the IMR programmed through OCW1. Each bit in
the IMR masks one interrupt channel if it is set (1).
Bit 0 masks IR0, Bit 1 masks IR1 and so forth,
Masking an IR channel does not affect the other
channels operation.

64

Special Fully Nested Mode

– Used in the case of a large system where cascading
is used, and the priority has to be conserved within
each slave.

– This mode is similar to the normal nested mode with
the following:

• When an interrupt request from a certain slave is in service
this slave is not locked out from the master’s priority logic
and further interrupt requests from higher priority IR’s within
the slave will be recognized by the master and will initiate
interrupts to the processor.

• When exiting the ISR the software has to check whether the
interrupt is the only interrupt that is serviced from the SLAVE.
This is done by sending an EOI command and check the In
service register in the SLAVE. If it is the only one, a non
specific EOI has to be sent to the MASTER, if it is not empty
no action performed.

65

Automatic Rotation

–Several interrupt sources all of equal priority

–When the EOI is issued the IS bit is reset and then assigned
the lowest priority

–The priority of of other inputs rotate accordingly

66

Automatic Rotation

interrupt requests
arrive on IR4 and IR6

EOI command always resets
the highest ISR bit (bit of
highest priority)
Use automatic rotating
mode to clear the IS bit as soon
as it is acknowledged

67

Specific Rotation

• The programmer can change priorities by
programming the bottom priority and thus
fixing all other priorities
(for ex: if IR5 is programmed as the bottom
priority device, then IR6 will have the highest
one)

• The set priority command is issued in OCW2
where R=1, SL=1, L0-L2 is the binary priority
level code of the bottom priority device)

68

OCW1 - OCW2

Controller will not confuse OCW2 with ICW1 since D4 = 1

OCW1 is used to access the contents of the IMR. A READ operation can be performed
to the IMR to determine the present setting of the mask. Write operations can be
performed to mask or unmask certain bits.

69

Example

ISR PROC FAR
…
MOV AL, 00100000b
OUT 20h, AL
IRET

ISR ENDP

What should be OCW1 if interrupt inputs IR0 through IR3 are to be masked
and IR4 through IR7 are to be unmasked?

D3D2D1D0 = 1111
D7..D4 = 0

00001111 = 0F

What should be OCW2; if priority scheme rotate on non specific EOI issued
101 00000 (since it doesn’t have to be specific on certain bit

70

OCW3

Permits reading of the contents of the ISR or IRR registers through software

71

Example
Normally when an IR is acknowledged and EOI is not issued, lower priority
interrupts will be inhibited.

So the SPECIAL MASK MODE, when a mask bit is set in OCW1, it
inhibits further interrupts at that level and end enables from all other levels,
that are not masked.

MOV AL, 00010000b ; mask IRQ4
OUT 21h, AL ; OCW1 (IMR)
MOV AL, 01101000b ; special mask mode
OUT 20h, AL ; OCW3

; by masking itself and selecting the special mask mode
interrupts on IRQ5 thru IRQ7 will now be accepted by the
controller as well as IRQ0 thru IRQ3

72

IR7

• Controller does not remember interrupt requests that are not
acknowledged

• If an interrupt is requested but no IR bit is found during INTA that is
IR is removed before acknowledged, then controller will default to
an IR7

• If the IR7 input is used for a legitimate device, the service routine
should read the IS register and test to be sure that bit 7 is high

ISR7 PROC FAR
MOV AL, 00001011b
OUT 20h, AL
IN AL, 20h
TEST AL, 80h ; IS7 set
JZ FALSE
; process interrupt here

FALSE: IRET
ISR7 ENDP

73

Example

Analyze the circuit
and write an
appropriate main
program and a service
routine that counts as
a decimal number the
positive edges of the
clock signal applied
to IR0
Use type number 72

74

Example

• A0 not used
• Two I/O addresses are FF00h and FF02h
• FF00h: ICW1,
• FF02h: ICW2, ICW3, ICW4, OCW1
• ICW1 = 00010011b = 13h
• type number 72 will be used

– ICW2 = 01001000b = 48h
• ICW3 not needed
• nonbuffered and auto EOI

– ICW4 = 03h
• mask all other interrupts but IR0

– OCW1 = 11111110b = FEh

75

Main program and ISR

CLI
START: MOV AX, 0

MOV ES, AX
MOV AX, 100h
MOV DS, AX
MOV AX, 0FF0h; stack
MOV SS, AX
MOV SP, 100h

; interrupt install
MOV AX, OFFSET SRV72
MOV [ES:120h], AX
MOV AX, SEG SRV72
MOV [ES:122h]. AX

76

Example contd

; initialization
MOV DX, 0FF00h
MOV AL, 13h
OUT DX, AL
MOV DX, 0FF02h
MOV AL, 48h
OUT DX, AL
MOV AL, 03h
OUT DX, AL
MOV AL, 0FEh
OUT DX, AL
STI

; wait for interrupt
HERE: JMP HERE

; service routine
SRV72: PUSH AX

MOV AL, [COUNT]
INC AL
DAA
MOV [COUNT], AL
POP AX
IRET

	Weeks 12 and 13 Interrupt Interface of the 8088 and 8086 Microprocessors
	INTERRUPT INTERFACE
	8088/8086 Interrupts
	Interrupt Service Routine
	Interrupt Vector Table
	Interrupt Vector Table
	Examples
	Interrupt Instructions
	Differences between INT and CALL
	Interrupt Mechanisms, Types, and Priority
	Interrupt instructions
	The Operation of Real Mode Interrupt
	INT 00 (divide error)
	INT 01 (Single Step)
	Other Interrupts
	External Hardware Interrupt Interface
	External hardware-interrupt Interface
	External hardware-interrupt Sequence
	Resident Programs
	Storing an Interrupt Vector in the Vector Table
	A virus!
	Example-storing Interrupt Vector
	Example-storing Interrupt Vector
	
	
	
	Interrupt Example
	Interrupt Example
	Memory organization
	Program
	Using hardware interrupt
	Interrupt circuits
	Description
	Remembering Mode 1 with Interrupts this time
	Example: “Read from the Keyboard routine” into FIFO
	Example contd: “Read from the FIFO into AH”
	Multiple Interrupts - Another Interrupt Structure
	Multiple Interrupts - Interrupt Structures
	Operation
	Multiple Interrupts Using Priority Encoder
	8255 Programmable Interrupt Controller
	8259 Programmable Interrupt Controller
	Block Diagram
	82C59A Programmable Interrupt Controller
	82C59A Programmable Interrupt Controller
	82C59A Programmable Interrupt Controller
	Interrupt Sequence
	8259 System Bus
	Content of the Interrupt Vector Byte
	Two controllers wired in cascade
	Fully Nested Mode
	Interrupt Process Fully Nested Mode
	End of Interrupt
	Initialization Sequence
	ICW1
	ICW2
	Master Slave Configuration
	Master Slave Configuration
	Master Slave Configuration
	ICW3
	Example Master-Slave
	ICW4
	Masks and Other Mode selection
	Special Fully Nested Mode
	Automatic Rotation
	Automatic Rotation
	Specific Rotation
	OCW1 - OCW2
	Example
	OCW3
	Example
	IR7
	Example
	Example
	Main program and ISR
	Example contd

